Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation.
نویسندگان
چکیده
Soil microbes in temperate forest ecosystems are able to cycle several hundreds of kilograms of N per hectare per year and are therefore of paramount importance for N retention. Belowground C allocation by trees is an important driver of seasonal microbial dynamics and may thus directly affect N transformation processes over the course of the year. Our study aimed at unraveling plant controls on soil N cycling in a temperate beech forest at a high temporal resolution over a time period of two years, by investigating the effects of tree girdling on microbial N turnover. In both years of the experiment, we discovered (1) a summer N mineralization phase (between July and August) and (2) a winter N immobilization phase (November-February). The summer mineralization phase was characterized by a high N mineralization activity, low microbial N uptake, and a subsequent high N availability in the soil. During the autumn/winter N immobilization phase, gross N mineralization rates were low, and microbial N uptake exceeded microbial N mineralization, which led to high levels of N in the microbial biomass and low N availability in the soil. The observed immobilization phase during the winter may play a crucial role for ecosystem functioning, since it could protect dissolved N that is produced by autumn litter degradation from being lost from the ecosystem during the phase when plants are mostly inactive. The difference between microbial biomass N levels in winter and spring equals 38 kg N/ha and may thus account for almost one-third of the annual plant N demand. Tree girdling strongly affected annual N cycling: the winter N immobilization phase disappeared in girdled plots (microbial N uptake and microbial biomass N were significantly reduced, while the amount of available N in the soil solution was enhanced). This was correlated to a reduced fungal abundance in autumn in girdled plots. By releasing recently fixed photosynthates to the soil, plants may thus actively control the annual microbial N cycle. Tree belowground C allocation increases N accumulation in microorganisms during the winter which may ultimately feed back on plant N availability in the following growing season.
منابع مشابه
Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil
*Plant seasonal cycles alter carbon (C) and nitrogen (N) availability for soil microbes, which may affect microbial community composition and thus feed back on microbial decomposition of soil organic material and plant N availability. The temporal dynamics of these plant-soil interactions are, however, unclear. *Here, we experimentally manipulated the C and N availability in a beech forest thro...
متن کاملNitrogen Addition Altered the Effect of Belowground C Allocation on Soil Respiration in a Subtropical Forest
The availabilities of carbon (C) and nitrogen (N) in soil play an important role in soil carbon dioxide (CO2) emission. However, the variation in the soil respiration (Rs) and response of microbial community to the combined changes in belowground C and N inputs in forest ecosystems are not yet fully understood. Stem girdling and N addition were performed in this study to evaluate the effects of...
متن کاملFate of recently fixed carbon in European beech (Fagus sylvatica) saplings during drought and subsequent recovery.
Drought reduces the carbon (C) assimilation of trees and decouples aboveground from belowground carbon fluxes, but little is known about the response of drought-stressed trees to rewetting. This study aims to assess dynamics and patterns of C allocation in beech saplings under dry and rewetted soil conditions. In October 2010, 5-year-old beech saplings from a forest site were transplanted into ...
متن کاملHerbivore Effects on Plant and Nitrogen Dynamics in Oak Savanna
Herbivores can often control plant dynamics by mediating positive feedbacks in plant species’ influence on nutrient cycling. In a 7-yr field experiment in a nitrogenlimited Minnesota oak savanna, we tested whether herbivores accelerated or decelerated nitrogen (N) cycling through their effects on plants. We measured effects of excluding insect (primarily Orthoptera and Homoptera) and mammalian ...
متن کاملDiel patterns of autotrophic and heterotrophic respiration among phenological stages.
Improved understanding of the links between aboveground production and allocation of photosynthate to belowground processes and the temporal variation in those links is needed to interpret observations of belowground carbon cycling processes. Here, we show that combining a trenching manipulation with high-frequency soil respiration measurements in a temperate hardwood forest permitted identific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 92 5 شماره
صفحات -
تاریخ انتشار 2011